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Cool flames
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Ordinary, visible flames burn at a high
temperature between 1500K and 2000K.

Cool flames burn at the relatively low temperature
of 500K to 800K, and their chemistry is completely
different. Normal flames produce soot, CO, and
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The low-temperature (LT) chemistry 5
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Fuel conversion
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ROQe = peroxy radical
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¢0O0QOOH = alkyl-hydroperoxy rad.
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Cool flames in droplet combustion (1) 6

||
Auto-ignition experiments - S
n-heptane droplets in air (dy,=0.70 mm) 1200/ P=0.1 MPa
1000 _
_I . X Jo T=950K
PR Single stage o 1000
ignition (s.i.) 2
900 o T =800K
o 800
< 3 N s 00k |
g 800 600F T=550K * ]
g 0 0.1 0.2 0.3 0.4 0.5
§ 700 + time [s]
Cool
g flames
=850 K
600 Single stage 10001 o1 MP
S¢  noignition (n.i.) ignition (s.i.) = — a
[
500 5
0.1 1 10 £ goo! T=700K
Pressure [MPa] g'
v
Adapted from: Tanabe et al., 26" Symposium O T=610K )
(International) on Combustion, p. 1637-1643 (1996) 600
0 0.1 0.2 0.3 0.4 0.5
time [s]

29th American Society for Gravitational and Space Research
5th International Symposium for Physical Sciences in Space




Cool flames in droplet combustion (lI) 7

Numerical simulations
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600 n-decane droplet, dg = 0.91 mm, P = 0.1 MPa, Tg =
O O 633 K).
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ressure [MPaj 1. Better understand the features of

_ _ _ , _ cool flames
Cuoci A., Mehl M., Buzzi-Ferraris G., Manca D., Faravelli T., Ranzi E.,

Autoignition and burning rates of fuel droplets under microgravity, 2. Study the possible formation of
Combustion and Flame 143, p. 211-226 (2005) . e e
cool flames in hot-wire ignitions
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2. Mathematical model
v Governing equations and numerical methodology
v Detailed kinetic mechanism
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Mathematical model 9

=
v" Continuity equation v" Spherical symmetry
v' Energy equation v" 1D equations
Liquid v' Species equations v’ Stretched grid

droplet

Gas phase

v Continuity equation
v Energy equation
v’ Species equations

Cuoci et al., Combustion and Flame
143, p. 211-226 (2005)

Ratio between gas and liquid radii: ~120
Equation of state (gas phase): ideal gas
Radiative heat transfer (gas phase): from Kazakov et al. (2003)

Dufour effect: neglected
Kazakov A., Conley J., Dryer F.L., Combustion
Soret effect: accounted for and Flame 134, p. 301-314 (2003)
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Numerical methodology 10

finite differences in space 1 — Ordinary DAE system

large dimensions of the problem
non linearity of reaction rates and
transport properties

=) Numgrical difﬂcglties in solving the
resulting very stiff DAE system

The DAE system is structured as a (quasi) tridiagonal block matrix with
square and dense submatrices whose dimensions depend on the
number of chemical species included in the kinetic scheme

Example

200 points x 435 species ~ 90,000 equations W——> ~24 h of CPU time [

Jacobian matrix of the
global system

BzzDAEB/oTri, a specifically conceived numerical solver, allows to efficiently treat the structured
sparsity of the Jacobian matrix as well as the stiffness of the DAE system.

Buzzi-Ferraris G., Manca D., Computers and

http://www.chem.polimi.it/homes/gbuzzi Chemical Engineering, 22(11), p. 1595-1621 (1998)
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N Detailed kinetic mechanism 11

Kinetic mechanism of pyrolysis, oxidation

and combustion of small (C1-C3) and large

hydrocarbons up to Diesel and jet fuels
(C16) as well as several pollutants

Hierarchy

Modularity

Generality

~ 435 chemical species

mechanism

~ 13,495 reactions

(/)
©
>

The kinetic mechanism is freely

http://creckmodeling.chem.polimi.it available in CHEMKIN format at this
web address

Frassoldati, A. et al., Combustion and Flame 157(2010), pp. 2-16
Ranzi, E. at al., Progress in Energy and Combustion Science 38 (2012), pp. 468-501
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3. Auto-ignited n-decane (C10H22) droplets

v Comparison with experiments
v Structure of the cool flame

v Numerical experiments on n-heptane and n-dodecane
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Description of the experiments 13

Adapted from Xu et al. (2003)

Autoignition experiments 30
Experiments performed in either the Japan
Microgravity Center (JAMIC) or the NASA
Glenn Research Center

T r LB B | I L T L 'I r 1 1 I L r 1 'I L]

JAMIC
Apparatus II 7

Fuel: n-decane (NC10H22)

Initial diameters: 0.91, 1.22 and 1.57 mm

Pressure: 1 atm

Droplet temperature: 300 K

Gas phase temperature: 633 K

Gas phase composition: air (21% O2, 79% N2) %

Negligible soot formation . SR BRI SN PR R

Droplet was suspended using a quartz fiber 00 1.2 24 36 48 60 72
t [s]

Xu G., lkegami M., Honma S., lkeda K., Ma X., Nagaishi H., Dietrich D.L., Struk P.M., Inverse influence of initial diameter on droplet
burning rate in cold and hot ambiences: a thermal action of flame in balance with heat loss, International Journal of heat and mass
transfer, 46, p. 1155-1169 (2003)
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Numerical simulations 14
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Dumped cool flames 15
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Cool flame structure 16
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N Extension to n-heptane and n-dodecane
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4. Hot-wire ignited n-heptane (NC7H16) droplets

v Comparison with experiments
v Kinetic analysis

v Comparison between different kinetic mechanisms
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Description of the experiments 19

. . Adapted from Nayagam et al. (2012
Hot-wire ignition experiments P vag (2012)

Experiments performed on board the
International Space Station (ISS) using
the multi-User Droplet Combustion
Apparatus (MDCA) installed in the
Combustion Integrated Rack (CIR)
facility as a part of the Flame 2
Extinguishment Experiments (FLEXSs) E
=

- 16

(zuur) .p

Fuel: n-heptane (NC7H16)
Initial diameter: 3.91 mm
Pressure: 1 atm

Initial temperature: 300 K
Gas phase composition: air
Negligible soot formation
Droplet tethered by a fine silicon Time (s)
carbide filament

Nayagam V., Dietrich D.L., Ferkul P.V., Hicks M.C., Williams F.A., Can cool flames support quasi-steady alkane droplet burning?,
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Numerical results 20

|
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Flame structures 21
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\J| Path analysis

Hotflame @ 2 s

Transition @ 8 s

22

Cool flame @ 30 s
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\J| Sensitivity analysis

Global sensitivity coefficients of the
vaporization rate during the LT combustion

23

Cool flame @ 30 s
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N Comparison with other kinetic mechanisms (I) 24

Several detailed kinetic mechanisms (with Low
Temperature chemistry) were tested and
compared

~ 100 species

~ 1000 reactions

E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A.P.

P O I | m | - C 1 C 1 6TOT S p e C | eS 43 5 Kelley, C.K. Law, Hierarchical and comparative kinetic modeling of

laminar flame speeds of hydrocarbon and oxygenated fuels,

(Ve rS|On 1212) Reac‘“ons 13,495 Progress in Energy and Combustion Science, 38 (4), pp. 468-501
(2012)
- . C.S. Yoo, T.F. Lu, J.H. Chen, C.K. Law, Direct numerical simulations
S e C I eS . 188 of ignition of a lean n-heptane/air mixture with temperature
Lu-NC7
u - - . inhomogeneities at constant volume: Parametric study,
R 939
eaCtlonS Combustion and Flame, 158(9), p.1727-1741 (2011)
. B Mehl M., W.J. Pitz, C.K. Westbrook, H.J. Curran, Kinetic Modeling
LLN |_ N C7 SpeCIeS 658 of Gasoline Surrogate Components and Mixtures Under Engine
- . B} Conditions, Proceedings of the Combustion Institute33:193-200
Reactions: 2,827 (2011)
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Comparison with other kinetic mechanisms (ll)
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The results are strongly affected by the
ability of the kinetic mechanism to
correctly capture the features of the cool
flame (i.e. by the accuracy and the
reliability of the low-temperature
chemistry)
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Conclusions

27

Numerical modeling of auto-ignited and hot-wire ignited isolated droplets in
microgravity with detailed kinetic mechanisms were successfully performed

The formation of cool flames, both for n-decane and n-heptane droplets, was
observed, explained and compared with experimental measurements

¢

Auto-ignition of n-decane droplets
(experiments performed by Xu et al.)

We demonstrated that the observed

vaporization rates can be explained

only by the presence of a cool flame
around the droplet

Hot-wire ignited n-heptane droplets
(experiments performed by Nayagam et al.)

We confirmed the hypothesis that after the
first-stage extinction, the vaporization is
sustained by a low-temperature, soot-free,
“cool-flame” heat release.
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Future work 28

.y . . . Table 1
Ad d |t|O Na | Simu |at|O ns Of eXpe rrme ﬂtS Of h Ot' Eipeerimental conditions, measured droplet initial diameter dp, hot-flame extinction

. . . . diameter dpe, and the second-stage extinction diameter d...
wire ignition experiments on n-heptane
Test P 0, CO, do dpe dee K B

droplets to check the formation of cool flames  # @m @& & (@m @m (@m) (e

1 2 21 9 2.92 1.73 042 0.475 4.44

2 1 21 0 3.91 3.28 1.30 0.368 4.48

3 1 21 0 3.58 2.8 0.73 0.448 4.48

4 1 21 0 3.69 3.46 0.72 0.462 4.48

5 1 18 0 3.48 3.16 1.60 0.356 3.82

6 1 17.5 0 2.74 2.03 0.78 0.412 3.75

7 1 18 15 3.76 3.63 1.88 0.361 3.51

8 1 18 15 2.84 2.55 1.46 0.36 3.51

. . . . 9 1 18 15 3.82 3.66 1.82 0.359 3.51
Deeper investigations about the chemistry of 0 1 18 15 249 197 125 0343 351
11 1 19 10 3.51 3.15 1.50 0.381 3.82

COO| flames 12 1 19 10 26 1.72 1.01 0334 3.82

13 1 17 20 3.76 3.71 2.16 0.346 3.22

14 1 20 5 29 2.79 1.74 0.355 414

15 1 20 5 3.04 2.33 1.18 0.351 4.14

H H 16 1 16 0 3.34 3.18 1.97 0.346 3.38

Improvements in the numerical model . oo S C A S S S e
H H H 18 1 15 0 2.55 2.31 1.73 0.319 3.16
(radiative heat transfer, numerical O bl e e a4 aa

20 0.7 23.5 55.8 3.77 3.04 1.83 0.412 3.74

methOdO|Ogyl etC) 21 0.7 23 23 3.87 3.42 1.89 0.412 4.35

22 0.7 21 30 4.05 3.83 291 0.393 3.74

23 0.7 19.6 35 3.11 29 2.37 0.3649 3.43

24 0.7 18 40 2.68 2.49 2.16 0.3593 3.04

Modeling of soot formation through a detailed 3 o7 1 32 2> 207 2 O n

kinetic mechanism (based on the discrete

sectional method) Adapted from Nayagam et al., Combustion and Flame,

159, p. 3583-3588 (2012)
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CRECKModeling on the web 31

HOME RESEARCH PEOPLE KINETIC SCHEMES PUBLICATIONS COLLABORATIONS COURSES WORK WITH US

) All our kinetic schemes can be freely downloaded
CRECK Modeling in CHEMKIN format from our web site:
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Polimi C1C16TOT (435 species)
Princeton Variable Pressure Flow
Shock-tube experiments Reactor at temperatures of 500-1000 K
and at a pressure of 8 atm
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Experimental data from: Experimental data from:

Ciezki H.K. and Adomeit G., Shock-tube investigation of self- Veloo P.S., Jahangirian S., Dryer F.L., An experimental and

ignition of n-heptane-air mixtures under engine relevant kinetic modeling study of the two stage auto-ignition kinetic

conitions, Combustion and Flame 93 p. 421-433 (1993) behavior of C7, C10, C12, and C14 n-alkanes, Spring Technical

Meeting of the Central States Section of the Combustion
Institute, Dayton, Ohio (2013)
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Lu NC7 (188 species)
Princeton Variable Pressure Flow
Shock-tube experiments Reactor at temperatures of 500-1000 K
and at a pressure of 8 atm
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Ciezki H.K. and Adomeit G., Shock-tube investigation of self- Veloo P.S., Jahangirian S., Dryer F.L., An experimental and

ignition of n-heptane-air mixtures under engine relevant kinetic modeling study of the two stage auto-ignition kinetic

conitions, Combustion and Flame 93 p. 421-433 (1993) behavior of C7, C10, C12, and C14 n-alkanes, Spring Technical

Meeting of the Central States Section of the Combustion
Institute, Dayton, Ohio (2013)
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LLNL NC7 (658 species)
Princeton Variable Pressure Flow
Shock-tube experiments Reactor at temperatures of 500-1000 K
and at a pressure of 8 atm
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ignition of n-heptane-air mixtures under engine relevant kinetic modeling study of the two stage auto-ignition kinetic

conitions, Combustion and Flame 93 p. 421-433 (1993) behavior of C7, C10, C12, and C14 n-alkanes, Spring Technical
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Institute, Dayton, Ohio (2013)
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Polimi-C1C16TOT
(version 1212)

Species: 435
Reactions: 13,495

E. Ranzi, et al., Progress in Energy and
Combustion Science, 38 (4), pp. 468-501

Lu-NC7

Species: 188
Reactions: 939

C.S. Yoo et al., Combustion and Flame,
158(9), p.1727-1741 (2011)

LLNL-NC7

Species: 658
Reactions: 2,827

Mehl M. et al., Proceedings of the
Combustion Institute33:193-200 (2011)

(2012)
Reduction performed Reduction performed
. bytheauthors v by the authors
Species: 100 Species: 88 Species: 160

Reactions: 1,567

Reduction factor: 4.35

Stagni A., Lumping and reduction of detailed
kinetic schemes: an effective coupling,
Submitted to Industrial & Engineering

Chemistry Research

Reactions: 387

Reduction factor: 2.13

C.S. Yoo et al., Combustion and Flame,
158(9), p.1727-1741 (2011)

Reactions: 1,540

Reduction factor: 4.11

Seiser H. et al., Proceedings of the
Combustion Institute28:2029-2037 (2000)
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Original mechanism (435 species)
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Shock-tube experiments
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Experimental data from:
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Experimental data from:

Veloo P.S., Jahangirian S., Dryer F.L., Spring Technical Meeting of
the Central States Section of the Combustion Institute, Dayton,
Ohio (2013)
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Original mechanism (188 species)
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Original mechanism (658 species)
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Experimental data from:
Ciezki H.K. and Adomeit G., Combustion and Flame 93 p. 421-
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