

POLITECNICO DI MILANO ¹ Politecnico di Milano (Italy)
 ² University of Science and Technology of China, Hefei (China)
 ³ National Synchrotron Radiation Laboratory, Hefei (China)
 ⁴ Technical University of Denmark (Denmark)

Experimental and detailed kinetic modeling study of PAH formation in laminar coflow methane flames

34th International Symposium on Combustion Warsaw, July 29-August 3, 2012

Motivations (I)

Methane is still today the most important gaseous fuel for practical applications

Investigations of PAH formation in methane flames played a **minor role** because of the **smaller propensity** to form aromatics and soot and because of experimental difficulties **PAH formation pathways** in methane flames are **different** from those of large hydrocarbons, especially because the large concentrations of CH₃ radical

McEnally et al., Prog. Energy Combust. Sci., 32 (2006), pp. 247-294 **D'Anna, et al.**, Combustion and Flame, 132 (2003), pp. 715-722 **McEnally et al.**, Comb. Flame, 117 (1999), pp. 362-372 **Anderson, et al.**, Proc. Comb. Inst., 28 (2000), pp. 2577-2583

Motivations (II)

Experimental methods

- Numerical simulations
 - ✓ Mathematical model
 - Numerical methodology

 Comparison between experimental data and numerical results

- ✓ Kinetic analysis of PAHs formation
 - \checkmark Reaction paths to PAHs
 - ✓ Formation of naphthalene

Conclusions

Experimental methods (I)

Experimental methods (II)

Flame	Flow rate(SCCM)			Mole fractions (%)			
	air	N ₂	CH ₄	Ar	N ₂	CH ₄	Ar
F1	160,000	314	308	5.87	50	49.066	0.934
F2	160,000	345	277	5.87	55	44.066	0.934
F3	160,000	377	245	5.87	60	39.066	0.934
F4	160,000	408	214	5.87	65	34.066	0.934

- ✓ The mole fraction of Ar was kept at 0.934% in the inlet gas flow
- The mole fraction of N₂ in the inlet gas flow was changed from 50% to 65% in steps of 5%

air

fuel

The total inlet gas flow rate was kept constant

air

Detected species

Main C1/C2 species

- Unsaturated C3 species (C₃H₂, C₃H₃, aC₃H₄, pC₃H₄)
- \checkmark Unsaturated C4 species (C₄H₂, C₄H₄, C₄H₆)
- \checkmark Unsaturated C6 species (C₆H₂)
- \checkmark First aromatics (C₆H₆, C₇H₈, C₁₀H₈, C₁₂H₈)

List of flame species and uncertainties

MW	Species	Uncertainties	ww	Species	Uncertainties	MW	Species	Uncertainties
40	Ar	<20%	30	CH₂O	<50%	52	C_4H_4	<50%
32	0 ₂	<20%	26	C_2H_2	<50%	54	C₄H₀	<50%
18	H ₂ O	<20%	28	C_2H_4	<50%	66	C₅H₀	factor of 2
2	H ₂	<20%	42	CH₂CO	factor of 2	74	C₀H₂	factor of 2
28	N ₂	<50%	38	C_3H_2	factor of 2	78	C₅H₅	<50%
44	CO2	<20%	39	C ₃ H ₃	<50%	92	C7H8	<50%
28	со	<20%	40	aC3H4	<50%	128	C ₁₀ H ₈	<50%
16	CH₄	<20%	40	pC₃H₄	<50%	152	C ₁₂ H ₈	<50%
			50	C₄H₂	<50%			

List of C5+ species

	Name	Structure			
C5H6	1,3-cyclopentadiene				
C6H2	1,3,5-hexatriyne				
С6Н6	benzene	\bigcirc			
C7H8	toluene	CH3			
С6Н5С2Н	phenylacetylene				
C10H8	naphthalene	$\bigcirc \bigcirc$			
C12H8	acenaphthylene				

Experimental methods

Numerical simulations

- ✓ Mathematical model
- ✓ Numerical methodology

 Comparison between experimental data and numerical results

✓ Kinetic analysis of PAHs formation

- ✓ Reaction paths to PAHs
- ✓ Formation of naphthalene

Conclusions

Mathematical model

Governing Equations

Hall, et al., J. Quant. Spectrosc. Radiat. Transfer 49 (1993), pp. 517-523 Kee et al., Sandia Report SAND89-8009 (1989) Smooke et al., Combustion Science and Technology 67, 1986 pp. 85-122

Numerical methodology

 $\frac{d\Psi}{dt} = \mathbf{S}(\Psi) + \mathbf{M}(\Psi, t)$

 Ψ : dependent variables (ω_i and T) S(Ψ): is the rate of change of Ψ due to reactions M(Ψ ,t): the rate of change of Ψ due to transport

Sub-step 1. The reaction terms are integrated over $\Delta t/2$ through the solution of an ODE system:

 $\frac{d\Psi^a}{dt} = \mathbf{S}(\Psi^a)$

Sub-step 2. The transport terms (convection and diffusion) are integrated over Δt by solving:

 $\frac{d\mathbf{\Psi}^b}{dt} = \mathbf{M}\big(\mathbf{\Psi}^b, t\big)$

Sub-step 3. identical to Sub-step 1

Strang, G., "On the construction and comparison of difference schemes", SIAM Journal of Numerical Analysis, 5 (1968), p. 506-517

Ren, Z. and S.B. Pope, "Second-order splitting schemes for a class of reactive systems", Journal of Computational Physics, 227 (2008), p. 8165-8176

- 🗸 Multidimensional, finite-volume code
- Structured and unstructured meshes
- Unsteady solutions
- Kinetics in CHEMKIN format
- Several ODE solvers (BzzMath, CVODE, DVODE, RADAU, LIMEX)
- Freely available (open-source)

The code will be released in the next months www.opensmoke.polimi.it

Cuoci A. et al., Submitted to Combustion and Flame (2012)

Kinetic mechanism (I)

V Soundhast

Frassoldati, A. et al., Combustion and Flame 157(2010), pp. 2-16

Ranzi, E. at al., Progress in Energy and Combustion Science 38 (2012), pp. 468-501

Kinetic mechanism (II)

http://creckmodeling.chem.polimi.it

Frassoldati, A. et al., Combustion and Flame 157(2010), pp. 2-16

Ranzi, E. at al., Progress in Energy and Combustion Science 38 (2012), pp. 468-501

Ranzi, et al., Exp. Thermal Fluid Science 21(2000), pp. 71-78

Granata, et al., Comb. Flame 131 (2002), pp. 273-284

Frassoldati, et al., Comb. Flame 158 (2011), pp. 1264-1276

Details about simulations

54 mm

The numerical calculations were performed on a **2D structured mesh** with ~10,000 cells (200 mm x 54 mm)

centered, 2nd order discretization schemes max Courant number: 0.10

Calculations were performed on 12 CPUs and ~5-7 days are needed for each flame

The steady-state solution was reached by using different kinetic schemes, with different levels of details, to minimize the computational cost

Experimental methods

- Numerical simulations
 - ✓ Mathematical model
 - ✓ Numerical methodology

Comparison between experimental data and numerical results

✓ Kinetic analysis of PAHs formation

- \checkmark Reaction paths to PAHs
- ✓ Formation of naphthalene

Conclusions

Flame F1: temperature and major species

Flame F1: temperature and major species

34th International Symposium on Combustion, Warsaw, Poland (2012)

18

Flame F1: temperature and major species

Flame F1: inaccuracies in the flow rates

Flame F1: major species

 The model tends to overestimate the levels of H₂ and C2 hydrocarbons

CH₂O (including the characteristic double peak) and CH₂CO are predicted in a satisfactory way

 Similar comparisons for flame F2, F3 and F4

C₃H₄ isomers are overestimated by a factor of ~2 and this could be attributed to the overstimation of C₂H₂

✓ C₆H₆ is overestimated by a factor ~3

 The overall agreement is satisfactory, considering the issues related to the flow entrainment and the complexity of the flame

F1 Flame: effect of dilution

The **peak value** of mole fraction profiles along the centerline is reported vs the **content of N**₂ in the fuel stream

Experimental methods

- Numerical simulations
 - ✓ Mathematical model
 - Numerical methodology

 Comparison between experimental data and numerical results

Kinetic analysis of PAHs formation

- ✓ Reaction paths to PAHs
- ✓ Formation of naphthalene

Conclusions

Major reaction paths (Flame F1)

Minor reaction paths to PAHs (Flame F1)

Formation of naphthalene

Marinov, et al., Proceedings of the Combustion Institute, 22 (1998), pp. 605-613 D'Anna, et al., Combustion and Flame, 132 (2003), pp. 715-722 Wang, et al., Journal of Physical Chemistry, 98 (1994), pp. 11465-11489 Anderson, et al., Proceedings of the Combustion Institute, 28 (2000), pp. 2577-2583

Sensitivity analysis for naphthalene

Experimental methods

- Numerical simulations
 - ✓ Mathematical model
 - Numerical methodology

 Comparison between experimental data and numerical results

- ✓ Kinetic analysis of PAHs formation
 - \checkmark Reaction paths to PAHs
 - ✓ Formation of naphthalene

Conclusions

- A set of coflow CH₄ diffusion flames was studied using synchrotron VUV photoionization mass spectrometry (PIMS) to measure C1/C2 species, unsatured C3-C6 species and first aromatics
- A multidimensional code for reacting, laminar flows with detailed chemistry was developed
- The numerical simulations were used to better interpret the experimental measurements

Numerical modeling of soot formation in the investigated flames

- Financial support for POLIMI activity was provided by the MIUR under the PRIN 2008 framework: "Cinetica dettagliata di formazione di idrocarburi poliaromatici e nanoparticelle da processi di combustione"
- Prof. Fei Qi thanks the support of National Basic Research Program of China (973 Program, 2012CB719701) and the Natural Science Foundation of China (50925623)
- The authors acknowledge Prof. Eliseo Ranzi of Politecnico di Milano for his comments and suggestions

CH4 flames (Qi)

- <u>Comparisons with GRI30</u>
- ✓ <u>CH2O and CH2CO</u>
- ✓ <u>Temperature</u>
- ✓ <u>CH4</u>
- ✓ <u>O2</u>
- ✓ <u>H2O</u>
- ✓ <u>CO2</u>
- ✓ CO
- ✓ H2
- ✓ <u>C2H2</u>
- ✓ C2H4
- ✓ CH2O
- ✓ CH2CO
- ✓ N2
- <u>C3H3 and C5H6</u>
- ✓ pC3H4 and aC3H4
- C6H6 and C12H8
- <u>C7H8 and C10H8</u>
- C4H4 and C4H6
- C4H2 and C6H2
- ✓ Grid sensitivity
- Parabolic vs flat profile
- <u>Radiative heat transfer</u>

34th International Symposium on Combustion, Warsaw, Poland (2012)

CH4 McEnally Flames

- ✓ <u>Phi = 12</u>
- ✓ <u>Phi = 6</u>
- ✓ <u>Phi = 4</u>
 ✓ <u>Phi = 3</u>
- ✓ <u>Phi = 2</u>

C2H4 McEnally Flames

CH4 Lifted Flame

C2H4/CH4 RoeslerFlames

33

Flame F1: major species

0 1 2 0

 The model tends to overestimate the levels of H₂ and C2 hydrocarbons

CH₂O (including the characteristic double peak) and CH₂CO are predicted in a satisfactory way

Similar comparisons for flame F2, F3 and F4

 \checkmark

Ketene (Flame F1)

V Temperature

Flame F1 (50% N₂)

Flame F3 (60% N₂)

34th International Symposium on Combustion, Warsaw, Poland (2012)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

Flame F3 (60% N₂)

34th International Symposium on Combustion, Warsaw, Poland (2012)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N_2)

Flame F4 (65% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

41

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N_2)

Flame F4 (65% N₂)

Flame F3 (60% N₂)

34th International Symposium on Combustion, Warsaw, Poland (2012)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

47

Flame F1 (50% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

C_3H_3 (propargyl) and C_5H_6 (1,3-cyclopentadiene)

Flame F1 (50% N₂)

Flame F3 ($60\% N_2$)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

\mathbf{V} pC₃H₄ (propyne) and aC₃H₄ (allene)

Flame F1 (50% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N_2)

Flame F4 (65% N₂)

$\mathbf{V} \subset \mathbf{G}_{6} \mathbf{H}_{6}$ (benzene) and $\mathbf{C}_{12} \mathbf{H}_{8}$ (Acenaphthylene)

Flame F1 (50% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

$\mathbf{V} \mathbf{C}_{7}\mathbf{H}_{8}$ (toluene) and $\mathbf{C}_{10}\mathbf{H}_{8}$ (naphthalene)

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

C₄H₄ (vinylacetylene) and C₄H₆ (butadienes+butyne)

Flame F1 (50% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N_2)

Flame F4 (65% N₂)

$\mathbf{V} | \mathbf{C}_4 \mathbf{H}_2$ (diacetylene) and $\mathbf{C}_6 \mathbf{H}_2$ (triacetylene)

Flame F1 (50% N₂)

Flame F3 (60% N₂)

Flame F2 (55% N₂)

Flame F4 (65% N₂)

Mixture fraction

0.80 0.60 0.60 0.40 0.20 0.40 0.20 0.00 0.20 0.00 0.20 0.00 0.20 0.00

Effect of radiative heat transfer

Parabolic vs flat profile

Grid sensitivity (I)

Grid sensitivity (II)

Grid sensitivity (III)

	Name	Structure			
C5H6	1,3-cyclopentadiene				
C6H2	1,3,5-hexatriyne				
C6H4	hex-3-en-1,5-diyne				
C6H5	phenyl radical	Radical of benzene			
С6Н6	benzene	\bigcirc			
C7H7	benzyl radical	Radical of toluene			
C7H8	toluene	CH3			
C6H5C2H	phenylacetylene				
C10H8	naphthalene	$\bigcirc \bigcirc$			
C12H8	acenaphthylene				

C4H2 diacetylene C4H2 C4H4 vinylacetylene C4H4 C4H6 butadienes+butyne C4H6 C5H6 cyclopentadiene CYC5H6 C9H7 indenyl_resonant INDENYL C9H8 indene INDENE C4H2 diacetylene C4H2 C6H2 triacetylene C6H2 C8H6 phenylacetylene C6H5C2H C12H7 acenaphthalene_radicals C12H7 C3H5 allyl CH2CHCH2 C4H6 butadienes+butyne C4H6 C3H6 propylene C3H6 C2H3 vinyl C2H3

Fei Qi Flames

Flame	Flow rate(SCCM)				Mole fractions (%)			
	air	N ₂	CH ₄	Ar	N ₂	CH ₄	Ar	
F1	160,000	314	308	5.87	50	49.066	0.934	
F2	160,000	345	277	5.87	55	44.066	0.934	
F3	160,000	377	245	5.87	60	39.066	0.934	
F4	160,000	408	214	5.87	65	34.066	0.934	

Flames studied by McEnally and D'Anna

Flame	Flow rate(SCCM)				Mole fractions (%)		
	air	N ₂	CH ₄	Ar	N ₂	CH4	Ar
F1	44,000	340	340	6.9	49.5	49.5	1

CH4 McEnally Flame (CH4)

TABLE 1. Flame Parameters for Computations

Φ	Q _{CH4} (cm ³ /min)	Q _{air} (cm ³ /min)	v _z (cm/s)	Y _{CH4} ,B	Y	Y _{N2} ,B			
Inner jet									
00	330	0	5.67	1.00000	0.00000	0.00000			
12.320	330	210	9.28	0.46420	0.15071	0.38509			
6.160	330	420	12.89	0.30226	0.19627	0.50147			
4.107	330	630	16.50	0.22408	0.21826	0.55766			
3.080	330	840	20.11	0.17803	0.23121	0.59076			
2.464	330	1050	23.71	0.14769	0.23975	0.61256			
Outer jet									
All	0	44000	10.48	0.00000	0.23200	0.76800			

Bennett, McEnally, Pfefferle, Smooke, "Computational and experimental study of axisymmetric coflow partially premixed methane/air flames", Combustion and Flame, 123, p. 522-546 (2000)

CH4 McEnally Flame (Φ=inf)

0.000001

0

0.025

0.05

0.075

axial coordinate [m]

0.1

34th International Symposium on Combustion, Warsaw, Poland (2012)

0.125

0.15

CH4 McEnally Flame (Φ=12.32)

CH4 McEnally Flame (Φ=6.16)

0.000001

0

0.025

0.05

0.075

axial coordinate [m]

Numerical

Exp.

0.125

0.15

34th International Symposium on Combustion, Warsaw, Poland (2012)

0.1

Numerical

0.125

0.1

Exp.

50

0

0

0.025

0.05

0.075

axial coordinate [m]

0.1

CH4 McEnally Flame (Φ=4.10)

CH4 McEnally Flame (Φ=inf)

CH4 McEnally Flame (Φ=2.46)

C2H4 McEnally Flame (Φ=inf) (1)

C2H4 McEnally Flame (Φ=inf) (2)

34th International Symposium on Combustion, Warsaw, Poland (2012)

70

C2H4 McEnally Flame (Φ=inf) (3)

C2H4/CH4 Roesler Flames

Figure 1. $C_2H_4/CH_4/N_2$ coflow flames: calculated maps of mole fractions (in ppm) of selected species at different values of the mixture parameter β . The maps of species refer to a rectangular region of 4.2 x 8 cm.
C2H4/CH4 Roesler Flames

Flame details Fuel: CH_4/N_2 (51.5%, 48.5% mass) Air: O_2/N_2 (23.2%, 76.8% mass) Temperature: 298 K Pressure: 1 atm V_{fuel} : 35 cm/s V_{air} : 35 cm/s

Geometry Fuel nozzle diameter: 4 mm Coflow diameter: 5 mm

Computational details Domain: 2D axisymmetric (55 x 200 mm) Computational grid: ~25,000 cells Discretization: second order centered

Kinetic schemes GRI30: 53 species, 325 reactions PolimiC1C16HTNOX: 168 species, 5,400 reactions

T [K]

300 1950

R. H. Mohammed, M. A. Tanoff, M. D. Smooke, A. M. Shaffer, Proceedings of the Combustion Institute, 27 (1998) 693-702.

34th International Symposium on Combustion, Warsaw, Poland (2012)

75

Comparison with the experiments

34th International Symposium on Combustion, Warsaw, Poland (2012)

NOx predictions

M.D. Smooke, A. Ern, M.A. Tanoff, R.H. Mohammed, D.F. Marran, B. Long Proceedings of the Combustion Institute, 26 (1996) 2161-2170.

Local refinements of the grid

The flame-lift off was obtained by looking at the HO₂ mass fraction maps, reported above. In order to correctly capture the lift-off of the flame several local refinement of the mesh were performed.

Numerical solution

34th International Symposium on Combustion, Warsaw, Poland (2012)

laminarSMOKE structure

www.opensmoke.polimi.it

Stiff ODE solvers in laminarSMOKE

	Language	Linear system solution	Parallel	Code available	License	
BzzMath6	C++	Direct	No	No	Free only for academic use	
DVODE	FORTRAN	Direct	No	Yes	Free	
CVODE	С	Direct/Iterative	Yes	Yes	Free	
DLSODE	FORTRAN	Direct	No	Yes	Free	
DLSODA	FORTRAN	Direct	No	Yes	Free	
RADAU5	FORTRAN	Direct	No	Yes	Free	
LIMEX4	FORTRAN	Direct	No	Yes	Free only for academic use	
MEBDF	FORTRAN	Direct	No	Yes	Free	

Most of the CPU Time (80-90%) is spent for the numerical integration of the ODE systems corresponding to the reaction step

The best performances are obtained using the following solvers: BzzMath6, CVODE, DVODE

Performances of stiff ODE solvers: CPU time

34th International Symposium on Combustion, Warsaw, Poland (2012)

Verification of the code

Laminar premixed flame H_2 (39.7%), Ar (50%) and O_2 (10.3%)

The reactants are fed at T=572 K and p=0.0467 atm at the velocity of 276 cm/s

	Max Values ^a					Mean Values ^b	
	n=1	n=2	n=3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	р	GCI (%)	Rn
Т [К]	1415.42	1417.41	1418.03	1418.298	1.71	0.0235	75%
H ₂	0.016169	0.016156	0.016152	0.01615	1.72	0.01362	78%
O ₂	0.000374	0.000376	0.000377	0.000377	1.62	0.1053	75%
H ₂ O	0.149387	0.149443	0.149461	0.149469	1.64	0.00706	78%
ОН	0.001394	0.001404	0.001407	0.001408	1.58	0.1372	69%
H ₂ O ₂	6.5138E-08	6.6245E-08	6.6596E-08	6.6759E-08	1.65	0.3061	71%
HO ₂	1.2465E-05	1.2478E-05	1.2478E-05	1.2484E-05	1.68	0.01812	70%
н	0.00362404	0.0036273	0.0036284	0.0036290	1.55	0.02011	72%
0	0.0016512	0.0016723	0.0016793	0.0016828	1.58	0.2614	69%

^a For H₂ and O₂ the values at the outlet boundary are reported instead of maximum values

^b Global values of p and GCI are calculated by means of arithmetic and volumetric and averaging, respectively