

ONE STEP KINETIC MODEL OF COAL PYROLYSIS FOR CFD APPLICATIONS

Tiziano Maffei, Eliseo Ranzi, Alessio Frassoldati and Tiziano Faravelli

Department of Chemistry, Materials, and Chemical Engineering, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy

OBJECTIVE

Aim of this work is the development of a simplified kinetic model for coal devolatilization, suitable for CFD applications, able not only to describe the conversion of coal but also the relative yields of solid, tar and gaseous species, in term of hydrocarbon, sulphur and nitrogen compounds.

0.2

DETAILED MODEL OF COAL PYROLYSIS

Three different detailed kinetic models have been considered:

- Kinetic model for the release of Hydrocarbon species [1].
- Kinetic model for the release of Sulfur compounds [2].
- Kinetic model for the release of Nitrogen compound. 3.

Nitrogen Kinetic Model

Nitrogen Matrix Characterization:

Has been applied the same criterion used to characterize the effect solid phase composition on the release of hydrocarbon species [3,4].

STOICHIOMETRIC COEFFICIENTS

Hydrocarbon release mechanism (high temperature)

	CHAR _c	H ₂	CH ₄	C ₂₋₅	BTX	СО	H₂O	CO ₂	TAR ₁	TAR ₂	TAR ₃
COAL ₁	5.13	1.50	0.38	0.50	0.00	0.00	0.00	0.00	0.50	0.00	0.00
COAL ₂	9.41	2.69	0.32	0.10	0.15	0.82	0.09	0.00	0.10	0.09	0.00
COAL ₃	3.64	1.35	0.26	0.59	0.11	1.91	1.23	0.64	0.09	0.00	0.29
CHAR _c	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Kmol j-th sp	Kmol j-th species per kmol of reference coal										

Nitrogen and Sulphur Distribution

COMPARISON BETWEEN MODELS

One Step	% C, daf	CHAR	TAR	CO	CO ₂	H ₂ O	C_2H_4	H ₂	HCN	H ₂ S	Α	E
Yallourn	65.3	2.219	0.143	0.721	0.222	0.432	0.323	0.632	0.0058	0.0013	5.7x10 ¹⁷	55800
Liddel	83.5	4.146	0.144	0.356	0.022	0.074	0.317	1.209	0.0169	0.0034	3.6x10 ¹⁶	58590
Hongay	93.7	5.880	0.128	0.066	0.000	0.007	0.150	0.634	0.0081	0.0026	7.4x10 ¹⁵	70300

Model

of Coal

Combustion

Pyrolysis

Pyrolysis

 $COAL \rightarrow CHAR + TAR + CO + CO_2 + H_2O + C_2H_4 + H_2 + H_2S + HCN \quad k = A \times e^{-\overline{RT}}$

REDUCTION

KINETIC PARAMETERS OF ONE STEP MODEL

CONCLUSION

In this work a simplified model for coal pyrolysis has been developed. The One Step model shows a satisfactory agreement with detailed models. Moreover the One Step model only needs the coal elemental composition as an input.

Acknowledgments This work is funded in the frame of the 'Accordo di Programma Ministero dello Sviluppo Economico- ENEA'

[1] Sommariva S., Maffei T., Migliavacca G., Faravelli T., Ranzi E., Fuel, 89:318, 2010. [6] Hambly E.M., Ph.D thesis, Brighman Young University, Utah, USA.