

Department of Chemistry, Materials, and Chemical Engineering Politecnico di Milano (Italy)

Alberto Cuoci Numerical simulation of NOx formation in turbulent flames through the Kinetic Post-Processing (KPP) technique

Université Libre de Bruxelles

March 5th, 2014 - Bruxelles (Belgium)

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants
- 6. Conclusions

1. The CRECK Modeling Group @ Politecnico di Milano

2. Introduction

- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

The CRECK Modeling Group

People

Full Professors

Eliseo Ranzi

Tiziano Faravelli

Dipartimento di Chimica, Materiali e

Ingegneria Chimica "Giulio Natta"

Politecnico di Milano

http://creckmodeling.chem.polimi.it/

Permanent Staff

Assistant Professors

Alberto Cuoci

Alessio

Frassoldati

Mattia Bissoli

PhD Students

Chiara Saggese

Alessandro Stagni

Giancarlo Gentile

Detailed kinetic mechanism

A. Frassoldati, A. Cuoci, Faravelli T., Niemann U., Ranzi E., Seiser K., Seshadri K., Combustion and Flame 157(1), 2-16 (2010)

Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., Law, C.K, Progress in Energy and Combustion Science, 38 (4), pp. 468-501 (2012)

- Hierarchy

- Modularity
- Generality
- ~ 500 species
- ~ 15,000 reactions

From molecules to furnaces

The CRECK Modeling Group on the web

AVAILABLE MASTER THESIS

The Chemical Reaction Engineering and Chemical Kinetics group has a consolidated experience of the the development of detailed and semidetailed Kinetio mechanisms of the pyrolysis, oxidation and combustion of gas, liquid and solids. The group is lead by Prof. Eliseo Ranzi and Prof. Tatano Faravelli and includes 3 professors, 2 assistant professors and 4 Pho Students.

Comprehensive Kinetic Schemes

Detailed kinetic schemes constitute a very useful tool for the proper understanding of combustion processes and the characterization of typical phenomena like ignition delays and induction times, flame structure and pollutant formation.

Design, simulation, optimization and control of industrial burners, gas turbines, boilers, incinerators and gasifier are typical application as well as the design of internal combustion engines and the formulation of new fuels.

2013 in Milano (Italy).

LAMINARSMOKE RELEASED!

We developed a code, called laminarSMOKE, for the numerical modeling of laminar reacting flows with detailed kinetic mechanisms. The laminarSMOKE code is freely available here!

The kinetic schemes can be freely downloaded in CHEMKIN format from our web site:

http://creckmodeling.chem.polimi.it/

The kinetic schemes were downloaded more than 3,600 times since Jan 2013

Academic and Industrial Collaborations

Academic

Industrial

Academic collaborations (I)

Academic collaborations (II)

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

Academic collaborations (III)

Industrial collaborations

1. The CRECK Modeling Group @ Politecnico di Milano

2. Introduction

- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

Reduction of pollutant emissions (I)

Increasingly stringent regulations for pollutant emissions in furnaces, power plants, gas turbines, burners etc.

Pollutant	Health Effect
CO – Carbon Monoxide	 Cardiovascular effects, especially in those persons with heart conditions
HC – Unburned Hydrocarbons (a primary component of Volatile Organic Compounds, or VOC)	 Eye and respiratory tract infection Headaches Dizziness Visual disorders Memory impairment
NO _x – Nitrogen Oxides	Lung irritationLower resistance to respiratory infections
PM – Particulate Matter (smoke is a primary component of PM.)	 Premature mortality Aggravation of respiratory and cardiovascular disease Changes in lung function Increased respiratory symptoms Changes to lung tissues and structure Altered respiratory defence mechanisms

Coupling detailed kinetics and complex CFD

Combustion is a complex process that involves hundreds of species and thousands of chemical reactions.

Detailed kinetic schemes

CFD simulations

millions of computational cells

Jet fuels and surrogate mixtures

need of modeling synergistic effects between the different components

Oxyfuel combustion

need of including radical species (O, H, OH, etc.)

Biofuels

bioalcohols, biodiesel, green diesel, bioethers

Flameless combustion

(low Damkholer number, slow chemistry)

Detailed kinetic mechanisms

Adapted from:

T.F. Lu, C.K. Law, Prog. Energy Comb. Sci., 35 (2009)

increasing effort to incorporate **more complex reaction mechanisms** in simulation of combustion processes and this has led to the development of reaction mechanisms with different levels of detail and comprehensiveness

computational cost associated with such mechanisms is usually very high

need of **computational tools** to make computationally efficient the management of large kinetic schemes and easy their **integration** in new and/or existing numerical codes

Computational cost of kinetics

Simulation of laminar, coflow flames fed with ethylene (2D, structured grid, in-house code)

CROBIEN

Usually the computational cost of multi-dimensional CFD simulations increases **more than quadratically** with respect to the number of species

 $\mathsf{C}\thickapprox\mathsf{N}^{2.5}$

Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, "Numerical Modeling of Laminar Flames with Detailed Kinetics Based on the Operator-Splitting Method", Energy & Fuels, 27 (12), p. 7730-7753 (2013), DOI: 10.1021/ef4016334

Coupling between turbulence and chemistry

19

Strong coupling between chemistry and turbulence in combustion processes

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

Coupling detailed kinetics and complex CFD

20

Combustion is a complex process that involves hundreds of species and thousands of chemical reactions.

Detailed kinetic schemes

CFD simulations

millions of computational cells

Jet fuels and surrogate mixtures

need of modeling synergistic effects between the different components

Oxyfuel combustion

need of including radical species (O, H, OH, etc.)

Biofuels

bioalcohols, biodiesel, green diesel, bioethers

Flameless combustion

(low Damkholer number, slow chemistry)

Segregated vs Coupled Algorithms

The Kinetic Post Processing technique

CFD simulation

a steady state CFD simulation of the combustion device is performed using a global kinetic mechanism, which allows for the correct prediction of thermal and flow fields, but which cannot give us information on pollutant species

pollutant species usually affect only marginally the main combustion process and consequently do not influence the overall temperature and flow field

Post-Processing

Detailed chemistry

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

The Kinetic Post Processing technique

1. CFD Simulation

2. Clustering and network construction

✓ The clustering reduces the overall dimensions of the problem

✓ According to the clustering, a complex reactor network is constructed

3. Interactions with the turbulence

✓ In each reactor a fixed temperature is assumed

 \checkmark These temperature is corrected to take into account the effects of turbulent fluctuations on the mean reaction rates

4. Network solution

- A very detailed kinetic scheme is used
- ✓ High number of non linear equations

example: 100 species x 50,000 reactors = 5,000,000 eqs

✓ Specifically conceived numerical method

Ehrhardt et al. (1998)

were **the first** to propose and apply the post-processing technique. A simplified network of ideal PSRs or plugflow reactors. The proposed zone model was restricted only to flows without recycling zones and with downstream convection much larger than upstream diffusion.

Falcitelli et al. (2002)

a **general algorithm to construct the reactor network**, and application to practical industrial systems, such as glass melting furnaces and pilot- and full-scale boilers.

Skjøt-Rasmussen et al. (2003)

retained all of the individual cells in the computational domain, which were treated as PSRs, with fixed temperature and mass flow rates, as predicted by the CFD simulation. The reactors were modeled using DKM and the effects of turbulent fluctuations were accounted for.

Fichet et al. (2010)

post-processing a gas turbine flame fed with natural gas. Attention was devoted to the **splitting criteria** to minimize the number of equivalent reactors the reactor **temperature was not assumed fixed** from CFD results, but the energy balance was solved during the post-processing phase.

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

Kinetic mechanisms for CFD

- Detailed mechanisms for hydrocarbon combustion may include thousands of species
- Lumping methodology is able to significantly reduce its number
- A further reduction is needed for their use in multidimensional models

Mechanism	# Species	# Reactions
Polimi_C1C16	500	15000

Global

schemes

Skeletal

schemes

Detailed

kinetics

Reacting Flux Analysis method (RFA)

1.

Selection of testing conditions:

- ✓ Temperature: 700 2000 K
- ✓ Pressure: 1 50 atm
- ✓ Equivalence Ratios: 0.5 2

2.

- Progressive reduction of detailed kinetics.
- ✓ Analysis of Reacting fluxes in sample PFRs reactors

3.

Validation of reduced kinetics through comparison with experimental data and detailed mechanism:

- Shock Tube Reactor
- Laminar Flame Speed
- Perfectly Stirred reactors

Application to multidimensional codes

Stagni A., Cuoci A., Frassoldati A., Faravelli T., Ranzi E., Industrial & Engineering Chemistry Research, Accepted, In press (2014), DOI: 10.1021/ie403272f

Ρ

Reduced kinetic schemes

Validation in coflow flames

Fuel: 3.67% NC7 96.33% N2 (vol.) @ 470K Oxidizer: 31% O2 69% N2 (vol.) @ 300K Velocities: 79 cm/s (F) and 68.7 cm/s (O)

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

From the CFD simulation to the Reactor Network

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

The clustering procedure (II)

Swirl Number = 0.9

Number of Reactors

Clustering criteria for diffusion flames (I)

34

upstream zone (USZ):

region between the furthest upstream part of the domain and the outlets of the jet and pilot

fuel-rich zone (FRZ):

where initial mixing and fuel decomposition occurs

low- and high-temperature flame zones (LFZ and HFZ): where heat release rates are highest (i.e., the flame brush)

jet expansion zone (JEZ):

the region of combustion products at elevated temperatures

co-flow zone (CFZ): region of low-temperature, slow-moving air

Consider neighboring computational cells, whose z coordinates, temperatures, and mixture fractions place them within the limits of the same zone. If the differences in properties between the cells are less than those defined for their assigned zone (Δf , ΔT , and Δz), they are considered to be the same reactor in the CRN.

Monaghan, R.F.D., et al., Detailed multi-dimensional study of pollutant formation in a methane diffusion flame (2012) Energy and Fuels, 26 (3), pp. 1598-1611, DOI: 10.1021/ef201853k

Clustering criteria for diffusion flames (II)

zone	zone limits	reactor criteria
upstream zone (USZ)	z < 0 m	n/a
fuel-rich zone (FRZ)	z > 0 m, $0.9 < f < 1.0$	$\Delta f = 0.01, \ \Delta z = 0.01 \ \mathrm{m}$
low-temperature flame zone (LFZ)	z > 0 m, $0.1 < f < 0.9$, $T < 1400$ K	$\Delta T = 100 \text{ K}$
high-temperature flame zone (HFZ)	z > 0 m, $0.1 < f < 0.9$, $T > 1400$ K	$\Delta T = 100 \text{ K} (T < 1800 \text{ K}), \Delta T = 50 \text{ K}$ (1800 K < T < 2000 K), $\Delta T = 2 \text{ K} (T > 2000 \text{ K})$
jet expansion zone (JEZ)	z > 0 m, $0.01 < f < 0.1$	$\Delta T = 100 \text{ K}$
co-flow zone (CFZ)	z > 0 m, $0 < f < 0.01$	$\Delta z = 0.2 \text{ m}$

1.57e-06

7.83e-07

1.45e-13

1400/42000 reactors

1.29e-06

6.45e-07

0.00e+00

270/42000 reactors

NO mass fraction fields

 \checkmark In the first guesses, coarse meshes with a high level of clustering are adopted

✓ The calculations are then iteratively performed using a progressively increased number of cells up to convergence, i.e without further grid sensitivity

 \checkmark The NOx-Postprocessor typically reduces the number of the original grid-cells with a factor of ~10

7.99e-07

4.00e-07

8.31e-12

40/42000 reactors

Diffusion flux due to concentration gradients and velocity fluctuations of the turbulent flow

$$\vec{\mathbf{J}}_{i} = -\frac{\mu_{t}}{\mathbf{S}\mathbf{C}_{t}} \cdot \nabla \omega_{i}$$

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

Effective volume of reaction

Fluctuations of temperature and NOx

The fluctuations of temperature have a strong impact on the formation of NOX because of the high activation energy of the thermal path

mole fraction

Correction coefficient for reaction rates (I)

40

Rate constant is highly non linear function of temperature

$$k(T) = A \cdot T^{\beta} \cdot \exp\left(-\frac{E_{att}}{RT}\right)$$

Introduction of a proper probability distribution function p(T)

$$\tilde{k}(T) = \int_{T_{\min}}^{T_{\max}} k(T) \rho(T) dT = C_{c} k(\tilde{T})$$

A. Cuoci, A. Frassoldati, G. Buzzi Ferraris, T. Faravelli, E. Ranzi, International Journal of Hydrogen Energy (32), p. 3486-3500 (2007)

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

Correction coefficient for reaction rates (II)

The error (<15%) is due to the fluctuations of composition (neglected)

Calculation of correction coefficients

The correction coefficient must be calculated for each reaction in each reactor

$$C_{c} = \frac{\int_{T_{\min}}^{T_{\max}} k(T) p(T) dT}{k(\tilde{T})}$$

Tabulation of Correction Coefficients

Since during the post-processing phase the temperature is fixed in each reactor, the correction can be pre-calculated and stored in memory (i.e. it is always the same, since it is independent of the composition)

Transport equation for the variance of temperature

$$\frac{\partial}{\partial t} \left(\overline{\rho} T^{"2} \right) + \nabla \left(\overline{\rho} \tilde{\boldsymbol{v}} T^{"2} \right) = \nabla \left(\frac{\mu_{\mathsf{T}}}{\mathsf{Sc}_{\mathsf{T}}} \nabla \tilde{\mathsf{T}} \right) + 2 \frac{\mu_{\mathsf{T}}}{\mathsf{Sc}_{\mathsf{T}}} \nabla \tilde{\mathsf{T}} \nabla \tilde{\mathsf{T}} - \mathsf{C} \overline{\rho} \frac{\varepsilon}{\kappa} T^{"2}$$

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

ΔΔ

Non Linear System (NLS) of equations

45

- Jacobian is sparse and block-unstructured
- High degree of accuracy is sought

A fully coupled resolution is implemented

 $\mathbf{C}(\boldsymbol{\omega}) + \mathbf{R}(\boldsymbol{\omega}) + \mathbf{f} = \mathbf{0}$

Linear Non-Linear External feeds

Numerical procedure

the numerical procedure combines different techniques to obtain the final solution, because the global Newton's method (or modified Newton's methods) can be successfully applied only if the firstguess solution is close to the real solution.

Remember that the first-guess solution (from CFD) could account only for a few species, while the KPP solution for hundreds of species

- 1. Global Newton's Method
- 2. Global ODE (Backward Euler)
- 3. Direct Substitutions (Local solution)
 - a. Local Newton's Method
 - b. Local ODE system (stiff solver)

Local solution

The individual reactors are solved sequentially to take the whole system closer to the solution. This means that each reactor is solved using a **local Newton's method**.

$$\left[\mathbf{C}_{in}\left(\boldsymbol{\omega}\right)+\mathbf{f}\right]_{old}+\mathbf{C}_{out}\left(\boldsymbol{\omega}\right)+\mathbf{R}\left(\boldsymbol{\omega}\right)=\mathbf{0}$$

To improve the robustness, especially in the first iteration, a **false transient method** is used to solve the single reactors. The NLS is transformed into a ODE system by adding the unsteady term

$$\mathbf{m}\frac{d\mathbf{\omega}}{dt} = \left[\mathbf{C}_{in}\left(\mathbf{\omega}\right) + \mathbf{f}\right]_{old} + \mathbf{C}_{out}\left(\mathbf{\omega}\right) + \mathbf{R}\left(\mathbf{\omega}\right)$$

Stiff ODE solvers

CVODE, DVODE, LSODE, RADAU5, BzzMath

Global solution

the **global Newton's method**, to ensure the accuracy needed to correctly predict chemical species present in very small amounts (ppm or smaller)

 $\mathbf{C}(\boldsymbol{\omega}) + \mathbf{R}(\boldsymbol{\omega}) + \mathbf{f} = \mathbf{0}$

When complex flows are investigated, the sequential approach (i.e., direct substitutions) could not be enough to reduce the residuals of equations to sufficiently small values to successfully apply the global Newton's method. In such a case, a **global timestepping** procedure must be taken into account.

$$\mathbf{m}_{tot} \frac{\boldsymbol{\omega}^{n+1} - \boldsymbol{\omega}^n}{\Delta t} = \mathbf{C} \left(\boldsymbol{\omega}^{n+1} \right) + \mathbf{R} \left(\boldsymbol{\omega}^{n+1} \right) + \mathbf{f}$$

Linear System solvers MUMPS 4.10 (Direct Solver) LIS 1.24 (Iterative Solver)

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

Numerical performances

A: a tubular combustor (56,150 reactors, 4.8M equations) B: an aircraft combustor (252,885 reactors, 22M equations) C: an aircraft combustor (290,764 reactors, 25M equations)

POLIMI NC7 kinetic mechanism 86 species and 1427 reactions

49

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

Validation: Sandia Flame D

Barlow, R. S. and Frank, J. H., *Proc. Combust. Inst.* 27:1087-1095 (1998)

Nozzle diameter = 7.2mm Pilot diameter = 18.2mm Re = 22,400

Fuel: 25% CH4 + 75% Air (vol.) Pilot: equilibrium composition of a mixture of CH4/air (Φ=0.77) Oxidizer: air

Monaghan, R.F.D., et al., Detailed multidimensional study of pollutant formation in a methane diffusion flame (2012) Energy and Fuels, 26 (3), pp. 1598-1611, DOI: 10.1021/ef201853k

RANS Simulations performed using the DRM22 kinetic scheme:

- 22 species
- 104 reactions

CFD results vs KPP results

Continuous lines: KPP predictions **Dashed lines**: CFD predictions

1114 Reactors

(less than 1% of the original cells)**103 species and 582 reactions**

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

NOx predictions

Continuous lines: KPP predictions **Dashed lines**: Ansys FLUENT NOX post-processor

The Ansys FLUENT NOx postprocessor has the following configuration:

- thermal, prompt, and N2O pathways activated
- instantaneous thermal [O] and
 [OH] models, quasi-steady
 N2O model
- temperature-only β-PDF
 turbulence interaction with 10
 PDF points
- temperature variance with a global maximum temperature.

Numerical performances

		time to solution	(h:min:s)	
CRN size	mechanism	CHEMKIN PRO	KPP	improvement factor
108 PSRs	GRI 1.2	0:14:20	0:00:06	143
108 PSRs	GRI 3.0	0:25:11	0:00:30	50
108 PSRs	NUIG C2	failed	0:00:39	
211 PSRs	GRI 1.2	0:23:45	0:00:16	89
211 PSRs	NUIG C2	failed	0:00:26	
255 PSRs	GRI 1.2	1:57:48	0:00:16	442
255 PSRs	NUIG C2	failed	0:01:28	
372 PSRs	NUIG C2	failed	0:01:48	
411 PSRs	NUIG C2	failed	0:02:04	
523 PSRs	NUIG C2	failed	0:02:26	
617 PSRs	NUIG C2	failed	0:02:38	
722 PSRs	NUIG C2	failed	0:03:20	
809 PSRs	NUIG C2	failed	0:03:50	
1114 PSRs	NUIG C2	failed	0:09:30	

NUIG C2 103 species 582 reactions **GRI 3.0** 53 species 325 reactions **GRI 1.2** 32 species 279 reactions

NOx formation pathways (I)

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

NOx formation pathways (II)

- Thermal NOx (Zeldovich)
 - Direct N_2 oxidation.
 - High temperature required (> 1800 K). Highly temperature dependent
- Prompt NOx (Fenimore)
 - N=N bond scission by fuel radicals (CH+N₂=HCN+N).
 - Occurs in flame fronts. Not significantly temperature dependent
- N₂O Pathway
 - Through N_2 + O + M \rightarrow N_2 O + M.
 - Relevant under elevated pressures and lean combustion (gas turbines)
- **Fuel NOx**
 - NO formation from N-containing fuel fragments (CN, NH).
 - Relevant if fuel contains chemically-bound nitrogen.

NOx Pathway Analysis

Of the total NOx produced by the Sandia D flame, 47% is due to the prompt pathway, 32% is due to the N2O pathway, and 21% is due to the thermal pathway.

Reaction channels

Important reaction channels for NO production in the high-temperature flame brush.

HNCO NH +H, O +OH +H ۰O +H₂, H₂O +OH +OH, M N₂O O NCO N_2 +NO HOCN +NO, -CO +H, OH, O , CN +0 NCO +0+OH +0 +N HCN +NO +CH +C₂H **HCN HCNO** +CH₃, CH₂, CH₂(s) +CN +M, H, O +CH₂, CH₂O, HCCO NO formation zone HNO NO **Rich NO** Rates of consumption zone Lean NO production of NO consumption zone

Important reaction channels for NO consumption in the fuel-rich region.

Validation: Sandia Syngas Flames

CFD Simulation details

CFD Code	FLUENT 6.3.2
Space	2D Axial-Symmetric
Time	Steady
Turbulence modeling	Standard κ-ε turbulence model
Wall treatment	Standard wall functions
Radiation	Discrete Ordinate Model
Solver	Segregated implicit solver

Spatial resolution	Second-Order Upwind scheme	
Pressure Interpolation	PRESTO!	
Combustion model	Eddy Dissipation Concept (EDC)	

POLIMI_COH2 kinetic scheme

13 species

37 reactions

Validation: Sandia Syngas Flames

Validation: Sandia Syngas Flames

3.00E-05

2.50E-05

2.00E-05

1.50E-05

1.00E-05

5.00E-06

0.00E+00

0

10

20

radial coordinate [mm]

NO mass fraction

NO mass fraction

Barlow, R.S., et al., Sandia/ETH-Zurich CO/H₂/N₂ Flame Data - Release 1.1. <u>www.ca.sandia.gov/TNF</u>, Sandia National Laboratories, 2002

Axial profiles

Radial profiles

x/d = 30

▲ x/d = 40

♦ x/d = 50

• x/d = 60

Flame A

30

40

NO and OH mass fraction for Flame B

Comparison between single shot measurements (symbols) and numerical simulations (lines)

continuous line is the result of the KPP, dashed line shows the effect of neglecting temperature fluctuations on NO

OH mass fraction

OH radicals calculated using the EDC model in FLUENT (dotted line) and the KPP (continuous line).

Valiation: NH₃-Doped Jet Flame

CFD Simulation details

CFD Code	FLUENT 6.2
Space	2D Axial-Symmetric
Time	Steady
Turbulence modeling	Standard κ-ε turbulence model
Wall treatment	Standard wall functions
Radiation	Discrete Ordinate Model
Solver	Segregated implicit solver

Spatial resolution	Second-Order Upwind scheme	
Pressure Interpolation	PRESTO!	
Combustion Model	Eddy Dissipation Concept	

POLIMI_	COH2 kinetic scheme	ŧ

13 species

37 reactions

Valiation: NH₃-Doped Jet Flame

Verissimo, A.; Rocha, A.; Costa, M. *Operational, combustion, and emission characteristics of a small-scale combustor,* Energy Fuels 2011, 25(6), 2469–2480.

3D Computational Mesh 100,000 cells

RANS Simulation K-e turbulent model Eddy Dissipation Model

Kinetic Scheme DRM22 (22 species, 111 reactions)

Combustion chamber

quartz glass cylinder internal diameter of 100 mm and length of 340 mm.

Fuel: CH4 @ 300K supplied from 16 small orifices (Φ =2mm) **Oxidizer:** air @ 673K supplied from a central nozzle (Φ =10mm)

Small-scale MILD Combustor

Small-scale MILD Combustor

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

67

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - Industrial cases
- 5. Extension to other pollutants

6. Conclusions

Corus I-70: NOx predictions

Danieli Centro Combustion

Curno, Italy

Test Furnace: up to 3 MW thermal power

Fuel: gas mixtures with low calorific value or natural gas

Burner region

Gas mixture with low calorific value

> 30% H₂ 15% CO 10% CH₄ 45% N₂

Natural Gas

95% CH₄ 3% C₂H₆ $1\% N_2$ 1% other

Burner region

Corus I-70: NOx predictions

CFD Code	FLUENT 6.2
Space	3D
Grid	Structured (4,000,000 cells)
Time	Steady
Turbulence modeling	Standard κ-ε turbulence model
Wall treatment	Standard wall functions
Radiation	Discrete Ordinate Model
Spatial resolution	Second-order Upwind scheme
Pressure Interpolation	PRESTO!
Combustion model	EDC

NOx emissions @3%O2 in waste gases - Air temperature: 490°C

600

Power [KW]

800

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

400

Natural gas

NOx exp - CH4

NOx Calc - CH4 - NOx Calc - Mix Gas

200

NOx exp - Mix Gas

1000

100

10

0

Nox [Arbitrary Units]

PERM Injection System

Studied the performance of the PERM (Partial Evaporation & Rapid Mixing) injection system in a **simple tubular combustor**

Experimental Data From	Karlsruhe University	ONERA
	Low P	High P
Inlet Pressure [bar]	8	22
Inlet Temperature [K]	506-522	811
Air/Fuel Ratio (AFR)	18-32	25.7-28.1
Pilot/Total Fuel Ratio	15%	15%

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

CFD Simulation (I)

BODY3D CFD Code

K-e turbulence model ED-FR Combustion model Global 3-step kinetic mechanism Mesh with 80,000 cells

AFR id the air/fuel ratio
CFD Simulation (II)

Comparison with measurements at the outlet

Comparison with measurements at the **outlet**

Kinetic Post

Processing

1500 reactions

Low P (8 bar)

Kinetic post-processing (II)

Low P (8 bar), AFR=18

Relative contribution to NO formation [%]

$N + NO = O + N_2$	thermal mechanism	70%
$CH + N_2 = HCN + N$	prompt mechanism	20%
$N_2O + [M] = N_2 + O + [M]$	N ₂ O mechanism	6%

High temperature

Low P (8 bar), AFR=31

Relative contribution to NO formation [%]

$N_2O + [M] = N_2 + O + [M]$	N_2
$NNH + O_2 = N_2 + H + O_2$	NN
NNH = $N_2 + H$	NN

N₂O mechanism 85% NNH mechanism 10% NNH mechanism 2%

Low temperature

Low P (8 bar), AFR=21.16

The model is able to capture the trends but tends to overestimate the CO emissions, especially at high temperatures. On the other hand, CO emissions predicted by the KPP are very close to the equilibrium value at high temperatures, while the effect of finite rate kinetics is evident at lower temperatures.

The "probe effect" (II)

Deviation on **CO and NO₂** predictions can be explained as a possible effect of the measurement technique. This problem is known in the literature.

The cooling rate of the flue gases inside the sampling probe is not fast enough to "quench" the reactivity.

Conversion of CO to CO_2 and NO to NO_2 occurs in the probe.

CLEAN Combustor

CLEAN is an axially staged combustor equipped with:

- 18 LPP injectors (Lean Premixed Prevaporized technology)
- 18 conventional pilot injectors

Good agreement with experimental measurements of Radial and Overall Temperature Distribution Factors at the outlet.

Different NOx formation in the conventional (pilot) and LPP injectors

Possible NO->NO2 conversion in the probe

3-RR-Allison 250C engine

ROLL-ROYCE ALLISON 250 ENGINE

MESH (~1,000,000 cells)

3-RR-Allison 250C engine

81

Technip GK6 Furnace

3D Computational mesh with 500,000 cells

Technip developed a parallel version of the KPP code based on MPI

Technip GK6 Furnace

NO mass fraction

IFRF Furnace (OxyFLAM2)

Experimental data

velocity, main species and temperature profiles inside the furnace at several axial locations

Furnace dimensions: 3750 x 1050 x 1050 mm Thermal power: 0.78 MW

IFRF Furnace (OxyFLAM2)

85

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

IFRF Furnace (OxyFLAM2)

The FLOX® Burner

10.70

10.42

6

7

1722

1702

2096

2049

61.8

48.6

A. Parente, A. Cuoci, C. Galletti, A. Frassoldati, T. Faravelli, L. Tognotti, *NO formation in flameless combustion: comparison of different modeling approaches,* European Combustion Meeting 2009 14-17 April 2009 - Vienna, Austria

	C : Ethere	1 001 (11 1	11.7.1.11		
Alberto) ('UOCI – 5 ^{III} Ma	rch 2014 – Uni	versite Libre (1e Kruvelles	

Niello Gasoil Burner

Particle diameter [m]

Typical hollow-cone structure obtained using a pressure-swirl atomizer

Riello Gasoil Burner

Riello Gasoil Burner

Comparison with measurements is satisfactory

Only measurements at the outlet

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

Sandia Bluff-Body Flame

92

The weak influence of the minor species on the temperature fields was checked through an energy analysis of the reactor network. For each reactor, energy unbalances were calculated:

$$\Delta H_{CFD} = (H_{in} - H_{out})_{CFD}$$
$$\Delta H_{KPP} = (H_{in} - H_{out})_{KPP}$$

The overall energy unbalance due to the postprocessing was evaluated as the difference. Then, the unbalance in terms of temperature was calculated as:

$$\Delta T = \frac{\Delta H_{KPP} - \Delta H_{CFD}}{C_{P} \dot{m}}$$

Local temperature unbalances in K

The average temperature unbalance is 0.27 K, with a standard deviation of 5.43 K

Soot formation mechanisms

A. D'Anna et al., Combust. Flame 157 (2010) 2106–2115.

The Discrete Sectional Method

Discrete sectional method: Large PAHs and soot particles with diameters of up	to ~	60 nm
are defined as classes with increasing molecular mass.		

- Each class is represented by a combination of lumped pseudo-species (BINs), each with an assigned H/C.
- The first BIN is the species with **20** carbon atoms and mass of about 250 amu, which is the corannulene. The first particle of soot is considered of about 3000 amu, which is the **BIN5**.

С

0.3

0.3

0.3

0.3

0.20

0.15

0.1

0.1

0.1

0.1

H/C

В

0.5

0.5

0.45

0.4

0.35

0.35

0.3

0.25

0.2

0.15

А

0.8

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.4

Mean Diameter

σ [nm]

0.76

0.96

1.21

1.52

1.91

2.41

3.01

3.78

4.76

5.99

Towards soot: from acetylene to PAHs

Alberto Cuoci – 5th March 2014 – Université Libre de Bruxelles

Formation of soot via KPP

- 1. The CRECK Modeling Group @ Politecnico di Milano
- 2. Introduction
- 3. The Kinetic Post Processing (KPP) Technique for NOx
 - ✓ Kinetic mechanisms for CFD applications
 - ✓ Reactor networks from CFD
 - ✓ Effects of temperature fluctuations on NOx formation
 - ✓ Solution of reactor networks
- 4. Applications to lab-scale and industrial flames
 - ✓ Lab-scale flames
 - ✓ Industrial cases
- 5. Extension to other pollutants

6. Conclusions

Papers on Kinetic Post Processing of NOx (I)

Monaghan R., Tahir R., Bourque G., Gordon R., Cuoci A., Faravelli T., Frassoldati A., Curran H., "Detailed emissions prediction for a turbulent swirling non-premixed flame", (2014) Energy & Fuels, 28 (2), pp 1470-1488, DOI: 10.1021/ef402057w

Stagni A., Cuoci A., Frassoldati A., Faravelli T., Ranzi E., "A fully coupled, parallel approach for the post processing of CFD data through reactor network analysis", (2014) Computers & Chemical Engineering, 60, pp 197-212, DOI: <u>http://dx.doi.org/10.1016/j.compchemeng.2013.09.002</u>

Cuoci, A., Frassoldati, A., Stagni, A., Faravelli, T., Ranzi, E., Buzzi-Ferraris, G., Numerical modeling of NOx formation in turbulent flames using a kinetic post-processing technique (2013) Energy and Fuels, 27 (2), pp. 1104-1122, DOI: 10.1021/ef3016987

Shabanian, S.R., Medwell, P.R., Rahimi, M., Frassoldati, A., Cuoci, A., Kinetic and fluid dynamic modeling of ethylene jet flames in diluted and heated oxidant stream combustion conditions (2013) Applied Thermal Engineering, 52 (2), pp. 538-554 DOI: 10.1016/j.applthermaleng.2012.12.024

Monaghan, R.F.D., Tahir, R., Cuoci, A., Bourque, G., Furi, M., Gordon, R.L., Faravelli, T., Frassoldati, A., Curran, H.J., Detailed multi-dimensional study of pollutant formation in a methane diffusion flame (2012) Energy and Fuels, 26 (3), pp. 1598-1611, DOI: 10.1021/ef201853k

Papers on Kinetic Post Processing of NOx (II)

Frassoldati, A., Cuoci, A., Faravelli, T., Ranzi, E., Colantuoni, S., Di Martino, P., Cinque, G., Kern, M., Marinov, S., Zarzalis, N., Da Costa, I., Guin, C., Fluid dynamics and detailed kinetic modeling of pollutant emissions from lean combustion systems (2010) Proceedings of the ASME Turbo Expo, 2 (PARTS A AND B), pp. 451-459, DOI: 10.1115/GT2010-22551

Frassoldati, A., Sharma, P., Cuoci, A., Faravelli, T., Ranzi, E., Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow (2010) Applied Thermal Engineering, 30 (4), pp. 376-383, DOI 10.1016/j.applthermaleng.2009.10.001

D. Manca, G. Buzzi-Ferraris, A. Cuoci, A. Frassoldati (2009). The solution of very large non-linear algebraic systems. COMPUTERS & CHEMICAL ENGINEERING, vol. 33, p. 1727-1734, ISSN: 0098-1354, doi: 10.1016/j.compchemeng.2009.04.010

A. CUOCI, A. FRASSOLDATI, BUZZI FERRARIS G, T. FARAVELLI, RANZI E.M. (2007). The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 2: Fluid dynamics and kinetic aspects of syngas combustion. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 32, p. 3486-3500, ISSN: 0360-3199, doi: 10.1016/j.ijhydene.2007.02.026

Other

Stagni A., Cuoci A., Frassoldati A., Faravelli T., Ranzi E., "Lumping and reduction of detailed kinetic schemes: an effective coupling", Industrial & Engineering Chemistry Research, Accepted, In press (2014), DOI: 10.1021/ie403272f

Ranzi, E., Frassoldati, A., Grana, R., Cuoci, A., Faravelli, T., Kelley, A.P., Law, C.K.. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels (2012) Progress in Energy and Combustion Science, 38 (4), pp. 468-501, DOI: 10.1016/j.pecs.2012.03.004

Frassoldati, A., Cuoci, A., Faravelli, T., Niemann, U., Ranzi, E., Seiser, R., Seshadri, K., An experimental and kinetic modeling study of n-propanol and iso-propanol combustion (2010) Combustion and Flame, 157 (1), pp. 2-16, DOI: 10.1016/j.combustflame.2009.09.002