
���������	
�������� ������� ��
��������
������ ����
�������� ��������

��
�����
��
!����������
"�
!���#����
��
$��%�
��������	
�	����������

��������� ����������������������� ���������	�� ������ �������������	��	�����������
����������������������	�� !��!"# ����������$����

����#�����
Today it is well recognized that realistic numerical simulations of combustion phenomena must necessarily require not only an accurate, detailed description of fluid
dynamic aspects, but also a realistic characterization of the chemistry and the physical and chemical properties of the gas mixtures involved. In the last years the
inaccuracy of simplistic descriptions assuming either equilibrium chemistry or global mechanisms in reacting flows has been clearly demonstrated. At the same time
there has been an increasing effort to incorporate more complex reaction mechanisms in simulation of combustion processes and this has led to the development of
reaction mechanisms with different levels of detail and comprehensiveness. Kinetic mechanisms sufficiently realistic and comprehensive usually consist of a large
number of species and reactions. As a consequence the computational cost associated with such mechanisms is usually very high. Moreover, chemical species are
not only are non-linearly coupled, but frequently they have different time scales, which make the simulations computationally stiff. Hence there is the need of
computational tools to make computationally efficient the management of large kinetic schemes and easy their integration in new and/or existing numerical codes.
In this work the OpenSMOKE framework is presented, a collection of C++ libraries specifically conceived to manage large, detailed kinetic schemes (with hundreds of
species and thousands of reactions) in numerical simulations of reacting flows.

Efficiency
• MixtureMap: a specifically conceived class is used for calculating
thermodynamic, transport properties and kinetics data in a fast way, without using
complex interfaces. From every Mixture object (working as a sort of C++ Factory) a
number of independent MixtureMap objects can be created. Then, when some
property is needed, the user has only to update the status of the MixtureMap object
and ask for such specific property

• code reformulation: many parts of the numerical algorithms are reformulated in
a less intuitive way in order to minimize the number of flops needed to perform
some calculations or to avoid the usage of CPU-expensive functions. Moreover,
the OpenSMOKE code tries always to handle objects efficiently, using only pass-
by-reference and return-by-reference techniques, without over-using costly
language features (such as exceptions, virtual methods and RTTI) and strongly
applying inline methods;

• caching: the code is written in order to cache as much as possible, which means
storing items for future use in order to avoid retrieving or recalculating them. Only
calculations which are strictly necessary are performed on the fly. If some variables
can be calculated only once, they are stored so that they are available for future
needs;

• object pools: they are a technique for avoiding the creation and deletion of a
large number of objects during the code execution. If the user knows that his code
needs a large number of short-lived objects of the same type, he creates a pool of
those objects. Whenever he needs an object in his code, he asks the pool for one.
When the user is done with the object, he returns it to the pool. The object pool
creates the objects only once, so their constructor is called only once, not each
time they are used;

• optimized functions: the numerical algorithms are often reformulated in order to
exploit the Intel® MKL Vector Mathematical Functions Library (VML). VML includes
a set of highly optimized functions (arithmetic, power, trigonometric, exponential,
hyperbolic, special, and rounding) that operate on vectors of real and complex
numbers;

�����������

[1] Weller H. G., Tabor G., Jasak H., Fureby C., Computers in Physics 12: 620-631 (1998)
[2] Stroustrup B., The C++ Programming Language, 3rd Edition, Addison–Wesley, Reading (MA), 1997
[3] Cary J. R., et al., Computational Physics Communications 105: 20-36 (1997)
[4] Alexandrescu A ., Modern C++ Design: Generic Programming and Design Patterns Applied, Addison-Wesley, (2001)
[5] Smooke M. D., Rabitz H., Reuven Y., Dryer F. L., Combustion Science and Technology 59: 295-319 (1983)
[6] Herbinet O., Pitz W. J., Westbrook C. K., Combustion and Flame 154: 507-528 (2008)

[7] Ranzi E., Frassoldati A., Granata S., Faravelli T., Industrial and Engineering Chemistry Research 44: 5170-5183 (2005)
[8] Narayanaswamy K., Blanquart G., Pitsch H., Combustion and Flame 157: 1879-1898 (2010)
[9] Richter H., Howard J. B., Physical Chemistry Chemical Physics 4: 2038-2055 (2002)
[10] Marinov N. M., et al., Combustion and Flame 114: 192-213 (1998)
[11] Buzzi-Ferraris G., BzzMath 6.0 Numerical Libraries, 2011
[12] Cuoci A., Frassoldati A., Faravelli T., Ranzi E., Combustion and Flame 156: 2010-2022 (2009)
[13] Grana R., et al., Combustion Theory and Modelling In Press (2011)
[14] OpenCFD Ltd., OpenFOAM® http://wwwopenfoamorg/

$���������

T.F. Lu and C.K.
Law, Prog.
Energy Comb.
Sci., 35 (2009)

%��	�������	�����������&����
����&������
�����������	���������&�����

��������
����������
��
���&�����

�����
'�����
())*+

RANS LES DNS

'%$ "'%$ "

(!)�*(!)�*

(!)*!(!)*!

�%�!#�%�!#

�%�#+�%�#+

,���-�,���-�

.�/!.�/!

0�0�

.�/#.�/#

��
&

��

��

���
���

�

!����!����

(!)*!(!)*!

#����#����

�(1��(1�

�!(1�!(1

!����!����

#����#����

�(1�(1

(!(!

*��,�*2�33,�	���
• 4�����������	�����
• 4����������������

*��,�*2�33�%��	����
• ,���	��������

• 2�����	����������

*��,�*2�33���5�
��
• ��5�����
���

*��,�*2�33����������
• �����	������	�����

*��,�*2�33��5�
����
����	���������
������������������������

������������-�����	��	�����

Policies
The OpenSMOKE library is based on template programming and strongly relies on

the concept of policies and policy classes , an important class design technique
that enable the creation of flexible, highly reusable libraries. In brief, policy-based
class design fosters assembling a class with complex behavior out of many little

classes (called policies), each of which takes care of only one behavioral or
structural aspect. A policy establishes an interface pertaining to a specific issue. The

user can implement policies in various ways as long as the policy interface is
respected. Since policies can be mixed and matched, a combinatorial set of
behaviors can be achieved by using a small core of elementary components.

Object oriented Programming (OOP)
The OpenSMOKE framework is based on Object-Oriented Programming (OOP),
since it is generally recognized that OOP produces code that is easier to write,
validate, and maintain than procedural techniques. The OOP approach involves

three main features: abstraction, inheritance, and polymorphism. Abstraction is the
ability to represent conceptual constructs in the program and to hide details behind

an interface. This is achieved by the concept of classes to represent conceptual
objects in the code, that encapsulate (i.e. contain and protect) the data that make up
the object. Member functions are provided that permit limited, well-defined access to

the encapsulated data. Inheritance enables relationships between the various
classes to be expressed, representing commonality between different classes of

objects by class extension. Polymorphism is the ability to provide the same
interface to objects with different implementations, thus representing a conceptual
equivalence between classes that in practical terms have to be coded differently.

The OpenSMOKE library is written in C++, since this is a good programming
language for scientific work. It is widely available on all platforms and, being based

on C, is fast. Several studies indicate no significant difference in performance
between Fortran and the C group of languages

1 OpenSMOKE::Mixture *mix = new OpenSMOKE::Mixture(fileName);
2 OpenSMOKE::MixtureMap *map = mix->CreateMap<0>();

3 map.updateStatus(T,P,y); // update status
4 cp = map->cp(); // specific heats
5 viscosityMix = map->viscosityMix(); // mix viscosity
6 R = map->formationRates(); // formation rates
7 r = map->reactionRates(); // reaction rates

User-friendly interface

�������� ����
�,������ ��&������

�����,
-��./����
��������
• ���������
�����	�����

• ��������������������������
• �(��2$6�	��������

• 7#""���	�����7#"""����	�����
• ,������&����8���������%*�8����	�

��������� !�������

��������� �����
����������
��
�00
�����
���
���
��������

���������
��
��������
������

• ���������	�����9�,%���
�/���:�����	������	-/�
��;

• ��������	�
��������:�����
�����������
• ����5��������������

• �����������������

1%%����
• ���������������

•��������������������*�����8�

����������
��&������
• ����������������&���

• �����&��
��

��������
2�&������

OpenSMOKE Suite
The OpenSMOKE library was coupled to the BzzMath libraries [11] (freely available at

http://homes.chem.polimi.it/gbuzzi/) to solve reacting systems which are typically
studied for kinetic purposes (ideal reactors, laminar opposed flames, laminar premixed

flat flames, flamelets, etc.)

The OpenSMOKE Suite is released as a collection of several solvers, devoted to
specific reacting systems. Detailed kinetic schemes can be written in CHEMKIN format.
The OpenSMOKE Suite was successfully used for the numerical modeling of premixed

flat laminar flames, laminar counter flow diffusion flames, diffusion flames from liquid
pools, unsteady and oscillating laminar flames, etc.

����&���� /!$

Methyl-Butanoate Mechanism

Herbinet et al. (2009)
2878 species

8555 reactions

T = 1000K
P = 2, 4, 6 atm

Feed: MB/Air (� =1)

/���,�� ���� ������
�����
C3H8/Air @ T=300K, P=1atm

PolimiC1C6HT: 178 species, 4744 reactions
Pitsch et al.: 158 species, 1049 reactions
Richter et al.: 158 species, 872 reactions

2�����
������� ����
�����
n-C7H16/Air @ T=300K, P=1atm

PolimiC1C6HT: 167 species, 4744 reactions
Livermore.: 654 species, 5264 reactions
JetSurf 2.0.: 344 species, 2163 reactions

laminarSMOKE
The OpenSMOKE library was coupled to the

OpenFOAM® framework to create a new solver,
called laminarSMOKE , for the numerical simulation of

multidimensional laminar flames

�����,
(3453
���������
•
����
	�
����������

• 	����5���
������	���������
• ������������������	�������������	����������

�����	�������������	����������

�����,
-��./����
��������
• ���������
�����	�����

• ��������������������������
• �(��2$6�	��������

• 7#""���	�����7#"""����	�����
• ,������&����8���������%*�8����	�

*��<*8�=�<����:��-

*��,�*2� <����:��-

�������,�*2�
�!3
����
���
������
��������
�����
����
��������

��������
• 	���������������
�	�

• ��������5���������9��>�	�����������������;
• ����	����

